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Different mass spectrometry
options enable detection of
different molecular signals

Oxidation Level (O/C)
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Vast Amounts of Data
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High-Resolution Analysis
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Averaged mass spectrum from the I"CIMS at the San Antonio
measurement site during the SAFS. This example is relevant to
all mass-spectral methods deployed at the SAFS.

* Extract multiple
individual ion
signatures from a single
mass window



HR Fitting Example

Mass spectrum High resolution chromatogram
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Left panel: contributions from individual ions to total UMR signal at m/z = 105. Right panel: Example
chromatogram during pre-campaign testing showing UMR and individual ion chromatographic peaks at retention
time = 584 sec.
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Data Volume Problem

Problem Solution
* Hundreds and * Positive Matrix
hundreds of individual Factorization
signals * Mathematical
e Some known technique groups co-
e Some with known varying signals into
] v “factors”
E NO;” CIMS MS (SOAS 2013)I (E::I%T:sm) . Each factor has
f ‘ H || |H |h"|||||| numerous contributing
masses

m/Q (Th)



Generic Receptor Model Schematic

Data Constant Profile. Constant Profile, Residual
Matrix Component 1 Component 2 Matrix
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A data matrix is decomposed into an arbitrary number of factors,

each of which 1s represented by a constant mass spectrum and a
contribution time series. There is usually some residual of fit.

PMF: Use linear least
squares in multiple
dimension to solve this
problem

Fit Details

« Each point in the
data matrix is weighted
by its uncertainty

* Time Series and
Mass Spectra have
positive elements

PMF:
Paatero, P. ,1997

Slide adapted from I. Ulbrich



Species of Atmospheric
Interest



-CIMS: Oxygenates and other
ntermediates
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|[dentifying Factors

. o 400
* |dentify using ggggﬁ
* literature [Mohr et al., mff
2013] and % I
8 10
* laboratory experiments godn b w w w
[Aerodyne, unpublished] fgj : I
: FI - R I
e Known signatures: 2
S 15
* |soprene oxidation ;%“ﬂ
0
 Alpha-pinene oxidation T 2 3 4 5 & 7

Factor Number

* Biomass burning

Signature ions of each factor categorized according to

* Trimet hyI benzene their match with known source-specific ions.
oxidation (high-NOx
conditions)



Total Mass

I-CIMS Species of Interest

_ Source Influences
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PMF: VOCs and Direct Tracers
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PMF: VOCs and Direct Tracers

0O&G VOC oxidation products
(methane > ethane)

Oxidized biogenics

Urban VOC oxidation products
(ethane > methane)

Fraction of Mass
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PMF results, with nominal description of each factor. Left: Individual factor contribution to total
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Apportioning the
Sources of Ozone
Formation




OH Reactivity to Apportion Ozone
Formation

- 2 * Ozone depends on the
- el interplay between NOXx
T 3 and VOCs

. . * VOCs reacting with OH
8% kick off ozone
316k - : chemistry.

| * Aim to apportion OH
316 10. 31.6 100. reactivity to understand
VS Wean At ozone formation

NO, emission rote
LY

Silman and He, 2002



VOC Concentration , ppbv

Relative impact of VOCs during
Campaign
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Where does the measured
airmass originate?

* Previously:
* Wind direction analysis

32

31

N * Now:
"  Full Hysplit trajectory

2 e S analysis

S, Pine

B C e * Land cover broadly

27 , Wi, - ™ - .

R ! categorized

LN
26 PR %;;8 ' | P R Ecological and oil and gas mapping information is
_ _ " Longhude _ _ shown gridded onto a 0.025 x 0.025 decimal degree

grid. The city bounds of San Antonio (center left) are
outlined in black.



Where does the measured
airmass originate?
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Do Intermediates Matter?

Problem

* Hard to find unique

intermediate soprene + OH —"_

* Many measured oxygenated —— \{'
intermediates can have

multiple sources HC? OH
Solution S
Toluene + OH —™— _—
 Use a chemical model to U
keep score

* Model can allows us to
follow each individual
branching point



Significant Effort Required to
Configure Model

* |Igor Pro
* Dynamically Simple {7
Model of Atmospheric  ;  =r
Chemical
Complexity (DSMACC) .
[Emmerson and Evans, _
2009] . ol ! ]
g 250 |- /AM A
. ?Zg K"L;{r "v/\.,/\__J\-JLJ \Lﬂl\l L o JWJ’«.-A./"-««:J’\,:V"“VJ\W\,/"V’\{—’/L \/:
* Master Chemical g
Mechanism (MCM)

version 3.3



Apportioning OH reactivity

HCHO

03

CH3CHO MACR(2)

MVK(2)

MACR(1)
CH4

NO2

MVK(1)

Initial Igor/DSMACC model result
Photostationary local noon on 5/13

The intermediates are critical

Dominant primary contributor is
isoprene in San Antonio s/12-5/14
2017

Some species have both direct
and indirect sources (e.g.
HCHO)

Model running now to account
for HCHO from isoprene vs
aromatics

[MACR+MVK] - Modeled ~ % Measured

Model incorporates isoprene, small alkane
and simple aromatics, but need more long
chain alkanes are needed



A\

M Biogenics

W Carbonyls

“co

“CH4

ENO2
wo3

& Other

B MVK + OH --> HMVKAO2

“ MACR + OH --> MACO3

" OH+03 --> HO2

W C5H8 + OH --> CISOPA




Anderson et al, ACP, 2019

Prelim. Result

Igor/DSMACC Afternoon
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16 %

“ Other

- Biogenics
11% [l Alkanes
[ |Carbonyls
Avg. reactivity: 12 1+2.24 5-1:|CO

The distribution of the various contributors to the overall %ﬁgi
OH reactivity for the UTSA (13—-16 May) [...] is shown for

[...] the afternoon, for times between 13:00 and 20:00. -03
The average OH reactivity (+10) is also shown. I Other

! 1%




Conclusions

 Composition of the
atmosphere differs greatly
between UTSA, Floresville

* Biogenic VOCs (e.g. isoprene
from oak trees) contribute
significantly to OH radical

formation in the SAFS study = = T
area

Latitude

-96 -95



Recommendations for Future Work:

AQRP 19-025

Outstanding Questions

* More sophisticated
model runs
e Carbonyl sensitivity
analysis, e.g.

* Biogenic precursors in
SAFS area

e Emissions inventories &
spatial distributions

* Analysis of ozone
mitigation strategies

Measurement Successes and
Lessons-Learned

* Campaign Design:
e 3 different locations
e CAMS co-location

* Early strategies to
manage volume of
data/analysis produced
by HR instruments

* Minimize gaps in
measurements
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