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TRACER-AQL1 Intensive Operational Period: September 2021
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Objectives

. Which configurations and simulation settings of WRF most
accurately replicate the extensive meteorological data collected as
part of TRACER-AQ?

. How well do coupled mesoscale meteorological and photochemical
grid modeling of coastal/maritime boundary layers replicate
observations?

. How well do photochemical grid models predict over-water ozone
concentrations and formation rates?

. What are the spatial distributions of ozone and ozone precursors
during TRACER-AQ on days with on-land monitors recording
exceedances of the NAAQS and how well does the photochemical
model predict such distributions?

. Which emission source categories affect ozone formation over
Galveston Bay and the Gulf of Mexico?



WRF-driven Photochemical Models: CAMx, WRF-GC, WRF-Chem
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Three Ozone Episodes: Sep 6-11, 17-19, and 23-26
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WRF Model Configurations

Simulations BC Meteorology PBL Microphysics Nudging
[Base] NCEP FNL MYNN 2M No
[WSM6] NCEP FNL MYNN WSM6 No
[YSU] NCEP FNL YSU 2M No
[ACM2] NCEP FNL ACM?2 2M No
[ERA5] ECMWEF ERAS MYNN 2M No
[SIP] ECMWEF ERA5S YSU WSM6 No
[Nudged v1] NCEP FNL MYNN 2M Yes
[Nudged v2] NCEP FNL MYNN 2M Yes
[HRRR] HRRR MYNN 2M No

*Nudging includes: (1) Observation nudging (vl w/ CAMS sites; v2 w/all available observations),
(2) Surface analysis nudging, (3) Objective analysis (to improve initial and boundary conditions)

**HRRR: High-Resolution Rapid Refresh meteorology at 3-km, hourly updated



[INudged] and [HRRR] outperform other options

Compared to on-land observations
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Compared to over-water observations
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(a) Temperature (degC)
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PBL Evaluation on land: La Porte

Ceilometer derived PBL at La Porte

Sep 8 Aerosol mixed layer height (km)
: 2.0 -
1.5 4 —
0.5 - Sep 23-26
Non-exceedance
f P W 17 W OW W oW 2 Dﬂ o | | 1 | I I

0 4 8 12 16 20



PBL Evaluation on land: La Porte

Ceilometer derived PBL at La Porte
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Over-water PBL Comparison

(a) PBL (m)
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Summary

Q1. Which configurations and simulation settings of WRF most
accurately replicate the extensive meteorological data collected as part
of TRACER-AQ?

A: [HRRR] is the easiest and the most effective option to reproduce
meteorology during the TRACER-AQ 2021 campaign. Still, WRF
overestimates wind speeds and has difficulty in reproducing wind
directions

Q2. How well do coupled mesoscale meteorological and photochemical
grid modeling of coastal/maritime boundary layers replicate
observations?

A: The WRF model, regardless of configuration settings, shows
persistent underestimates of PBL heights on-land and over water. The
model captures the low marine PBL in the morning but has difficulties
capturing the high PBL in the afternoon, leading to low correlation
among different configurations and a low bias.
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domain 1

domain 2

domain 3

Photochemical Model Evaluation and Intercomparison: September 2021
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3) All models overestimate ozone in clean days
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CAMX

WRF-GC

Over-water surface ozone prediction
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All models
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during episode
periods
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lowest bias in
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highest correlation
with offshore ozone
(not shown)
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O, distribution compared to observations

* O4 Difference: Two O, Episodes [Sep 6-11 & 23-26] — Clean days (Dots: On/offshore observation)
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Vertical Distribution of O,

TOLNet lidar at UH (left) and La Porte (right), Sep 6-11
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Summary

Q3. How well do photochemical grid models predict over-water ozone
concentrations and formation rates?

A: All models underestimate offshore ozone during episode periods,
despite being able to simulate higher offshore ozone compared to
clean conditions. WRF-GC has the lowest bias, while CAMx has the
highest correlation with offshore ozone. WRF-Chem is best at capturing
free-troposphere ozone plumes.

Q4. What are the spatial distributions of ozone and ozone precursors
during TRACER-AQ on days with on-land monitors recording
exceedances of the NAAQS and how well does the photochemical
model predict such distributions?

A: High ozone is found in southwest Houston, the Ship Chanel, and
offshore. CAMXx has the best performance for on-land distributions,
while WRF-GC is best at offshore distributions. WRF-Chem does not
capture high ozone in southwest Houston
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CAMX Process Analysis
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Sources of elevated offshore ozone

* Anthropogenic emissions from outside Houston
->Houston background: quantified via zeroing anthropogenic emissions
In the innermost (d03) domain (1.33km-resolution)
e Houston anthropogenic emissions: on-land and offshore
« Soft emission perturbation experiments (10% reduction in NOx or VOC)

_ Land NO, Land VOC m Water VOC
[CTR] Full Full Full Full
m Zero Zero Zero Zero

[Land_NO,] 10% Full Full Full
reduction

Full 10% Full Full
reduction
w Full Full 10% Full
reduction
Full Full Full 10%
reduction

21



Large Houston background predicted by models

CAMX

(a) Clean days N (b) Sep 6-11

Regional background is 78-85% of total ozone
Regional background increases by 7-10 ppbv
during episode days, while total ozone increases
9-10 ppbv

WRF-GC

Regional background is 86-88% of total ozone
Regional background increases by 14-17 ppbv
during episode days, while total ozone increases
17-19 ppbv
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Model intercomparison on ozone precursors: NOx

CAMX WRF-GC

 NOXx concentrations are similar in [CTR] between CAMx and WRF-GC
 NOx concentrations in [BGD] are a factor of two higher in WRF-GC, due to natural NOx
emissions
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Model intercomparison on ozone precursors: isoprene

CAMX WRF-GC
] \a.‘:&.'ﬂ '30 . s

o g
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Isoprene

[CTR]
Isoprene

* |soprene concentrations differ by a factor of 6 between CAMx and WRF-GC
* |soprene concentrations do not change much between clean and episode days
* |soprene concentration increases in [BGD] simulation due to reduced oxidants
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Model intercomparison on ozone precursors: HCHO

CAMx WRF-GC
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« HCHO concentrations differ by 30% between CAMx and WRF-GC

 Houston background accounts for 73-75% of total HCHO predicted by both models (natural
emissions and/or transport)

e 70-90% increases in HCHO in [BGD] simulations between clean and episode days
(regional transport of VOCs from outside Houston)
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Emission Perturbation Experiments

(a) Percentage changes during Sep 6-11: (([Land NOx] minus [CTR])/[CTR])*100
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 Less than 1% change in ozone in all emission perturbation experiments,
consistent with high Houston background in both models
o Offshore ozone in models is not sensitive to local emissions, harder to control
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Summary

Q5. Which emission source categories affect ozone formation over
Galveston Bay and the Gulf of Mexico?

A: We found the largest contribution to offshore ozone comes from
regional background (e.g., natural emissions, anthropogenic emissions
from outside Houston). Local anthropogenic emissions contribute to
less than 20% of surface ozone over Galveston Bay and the Gulf of
Mexico during the episode periods. Ozone precursors originating from
outside Houston, particularly VOCs, are likely the main contributor to in
situ ozone production at offshore locations. This finding reveals the
resiliency of high ozone over water to small changes in land emissions
or over-water emissions, making it difficult to control.
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Suggestions on Future Work

« To iImprove offshore ozone prediction

(1) Model underestimates PBL - underestimate entrainment of local pollution from
sea-breeze return flow

(2) Model overestimates wind speeds - too diffusive
(3) Halogen chemistry

* Meteorological model
* Improvement on wind simulations and marine PBL

 Photochemical model

e Background concentrations in models need to be evaluated and
constrained

» All models overestimate surface ozone during clean conditions,
suggesting background probably too high
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HSRL-2, Sep 9, 14.3-17.5 CDT

CAMx, Sep 9, 14.3-17.5 CDT

WRF-GC, Sep 9, 14.3-17.5 CDT

WRF-Chem, Sep 9, 14.3-17.5 CDT 100

200+
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Episode days belong to Cluster

Regional transport
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Performance metrics for winds

(North)

M-0, when |[M-0| < 180°
M-0 =

(M- 0) (1 3 360

;when |M-0| > 180°
IM—[}I) | |

YV . sin (M; — M)sin (0; — 0)

Corr.R =
\/Zf"’zl sinZ(M; — M) \/ZL sinZ(0; — 0)
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PBL Evaluation: La Porte
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* Model is able to reproduce the vertical structure of the lower atmosphere.
* Model correctly diagnoses PBL in the afternoon

* Model puts nighttime PBL at the surface layer, but ceilometer has two layers
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Table 2. Model performance metrics used in this study.

Performance Metrics Formulas
N . . .
Mean Bias (MB) MB=1/NY.(M,-0) Wind Directions:
i=1
< M-o0, when |[M-0| < 180°
Mean Absolute Error (MAE) MAE =1/ N2| M -0.| M-0 = 360 |
i=1 (M—O)(l—m),whenlM—Ol > 180°
N
> (M,-0)
Normalized Mean Bias (NMB) NMB == x100%
2.0, -
i=1
N o B N sin (M; = M)sin (0; — 0)
Correlation Coefficient (R) Z(M,. ~M)(0.-0) Corr.R = = =
Corr.R = —= = = JZ?;l sin?(M; — M) \]Z?I:l sin?(0; — 0)
Z(M,. —M)? Z(q. ~0)
Root Mean Square Error (RMSE) ~
RMSE = \/I/NZ(MI, -0)
i=1

Note: M is the model output, O is the observation, N is the number of samples, and

ﬂ_ff=1/NiMi,6=1/NiOi-

i=l i=1
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