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EXECUTIVE SUMMARY 

 
In this project we used column nitrogen dioxide (NO2) information from the Geostationary 
Coastal and air pollution events Airborne Simulator (GCAS) instrument (250 × 560 m2) (Janz et al., 
2019; Nowlan et al., 2018), available during the September 2021 NASA/TCEQ Tracking Aerosol 
Convection ExpeRiment – Air Quality (TRACER-AQ) field campaign and the Tropospheric 
Monitoring Instrument (TROPOMI), to better understand the fine-scale structure of NOX 
emissions in the Houston metropolitan area including a sector-by-sector analysis.  
 
Complementing the remote sensing observations, the Comprehensive Air Quality Model with 
Extensions (CAMx) was run with a fine spatial resolution (444 × 444 m2) using the 2019 TCEQ 
emissions inventory. The model output was thoroughly compared to observations from the GCAS 
instrument, the Pandora instruments, and TROPOMI in order to identify gaps in our 
understanding of NOX emissions and NO2 dispersion within CAMx.  
 
This work mapped to four Research Priority Areas of the Texas Air Quality Research Program 
(AQRP), as shown in the table below.  
 
Table 1. How this project will respond to the AQRP Research Priority Areas 

Research Priority Area How this project addressed the Research Priority 

Utilize TRACER-AQ and 
over-water measurements 

The GCAS and Pandora measurements acquired during TRACER-AQ were 
used extensively in this project to infer sectorized NOX emissions 
addressing TRACER-AQ science objectives on Ozone Photochemistry and 
Model Evaluation 

Improve emissions 
inventories 

Satellite and aircraft measurements, aided by machine learning, were 
used to directly estimate instantaneous NOX emission rates, often from 
individual point sources or sectors of sources. 

Improve accuracy of 
photochemical grid 
models 

Model (CAMx) was tested against the GCAS and Pandora observations to 
identify where improvement is needed in NOX emissions by sector, 
therefore improving model performance. 

Use of satellite and other 
remote sensing data 

Utilized aircraft (GCAS) and satellite (TROPOMI) to better understand 
spatial patterns of NO2 and its relationship to NOX emissions 

 

The primary objective of this work was to better understand the sector-by-sector NOX emissions 
in the Houston metropolitan area during September 2021 using a combination of chemical 
transport models, aircraft observations, ground measurements, and satellite datasets. The 
broader implications of this study were to achieve a better understanding of the spatial and 
temporal patterns of ozone precursor emissions. Lessons learned and techniques developed for 
this project could be applied to other areas within Texas and potentially other areas in the United 
States when data from the Tropospheric Emissions Monitoring of Pollution satellite (TEMPO) 
become available. The project also demonstrated the capability to: 1) estimate NOX emissions 
using the GCAS and 2) quantify sectorized NOX emissions from certain sources (non-CEMS point 
sources, airports, railyards, and commercial marine) that are difficult to constrain using typical 
“bottom-up” methodologies.  
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This project had six tasks to accomplish the primary objective of better understanding the fine-
scale structure of Houston NOX emissions. Results from these six tasks will be summarized with 
brevity here and in more detail in Section 2.  
 
Task 1. Simulate NO2, HCHO, O3 at 444 × 444 m2 spatial resolution using WRF-CAMx 
 
For this project, the WRF and CAMx models were run at 444 x 444 m2 spatial resolution for 
September 1-11 and 22-27, 2021 which corresponded to GCAS flights during the TRACER-AQ field 
campaign. The 444 x 444 m2 domain was nested inside 36/12/4/1.333 km modeling domains.  
 
The near-surface CAMx model performance for MDA8 ozone was a NMB of –2.5%, a NME of 
15.0%, and a mean bias of –1.3 ppb. The top decile of observed ozone values was consistently 
underestimated by the model, and the lowest decile of observed ozone values was consistently 
overestimated by the model.  
 
Performance against the NO2 CAMS monitors was notably worse. The near-surface model 
performance for NO2 was a NMB of –59.1%, a NME of 62.3%, and a mean bias of –5.0 ppb. A 
portion of the disagreement could be due to a known positive interference of PAN and HNO3 in 
chemiluminescence NO2 monitors. In Task 5, modeled column NO2 are evaluated in comparison 
to GCAS aircraft measurements, TROPOMI satellite measurements, and Pandora surface-based 
column measurements. 
 
Task 2. Process the GCAS measurements 
 
GCAS measurements were acquired from the NASA G-V aircraft from an altitude of 28,000 ft, 
with an on-ground pixel size of approximately 560 x 250 m2. There were 12 flights days during 
TRACER-AQ and 10 of them were utilized in this project. Skies were mostly clear during the flight 
days – a summary of the daily meteorology is in Table 2.2.1 – and all measurements with cloud 
interference were screened out.  
 
Originally, when using NO2 vertical profile information from a 0.25° x 0.25° model to process the 
GCAS measurements, there was strong correlation of total column NO2 (r2 = 0.80) and a small 
NMB (+6.3%) in comparison to the Pandora instruments – which uses a similar measurement 
technique but is otherwise a completely independent instrument – deployed during TRACER-AQ. 
When using NO2 vertical profile information from the 444 x 444 m2 CAMx simulation developed 
in this project, the correlation and NMB further improved (r2 = 0.81 and NMB of +3.2%). 
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Task 3. Process the satellite NO2 data 
 
Measurements of total and tropospheric vertical column NO2 are available from TROPOMI daily 
between 1:30 – 3 PM over the Houston metropolitan area. Daily snapshots of tropospheric 
column NO2 during September 2021 can be seen in Figure 2.3.1. When comparing the operational 
TROPOMI total column measurements to Pandora, correlation was r2 = 0.62 and there was a small 
low NMB of –11.7%. 
 
Similar to GCAS, NO2 vertical profile information is needed to process the TROPOMI satellite data. 
Inclusion of NO2 vertical profile information from CAMx increased the maximum observed values 
by +11% and decreased the mean value in the Houston domain by –8% (Figure 2.3.2). The 
correlation and NMB at the Pandora locations only modestly improved when the CAMx NO2 
vertical information was included, r2 = 0.62 and NMB of –11.2%, despite larger changes elsewhere 
in domain as discussed above.  
 
Task 4. Calculating NOX from NO2 airshed measurements 
 
In this project, two statistical-based methods were employed to infer NOX emissions from the 
GCAS measurements. The first method utilized an exponentially modified Gaussian (EMG) fit and 
was used exclusively for point source emissions. The second method utilized the flux divergence 
(FD) and has suitability for a wider range of sources while needing additional assumptions to 
derive NOX emissions rates.  
 
The EMG method was successful in three areas with point sources: W. A. Parish power plant, 
Baytown, and Channelview. For the GCAS NO2 measurements over the Parish power plant on 
September 24, 2021, we were able to calculate NOX emissions that matched the CAMPD reported 
NOX emissions to within 10%. When the method was then applied to the Baytown area on 
September 8, 2021, there appeared to be a 43% NOX underestimate in the inventory, which is at 
the cusp of the uncertainty in the method. There was better agreement between inventory and 
GCAS measurements in the Channelview area during a September 9, 2021 overpass. 
 
The FD method was then able to evaluate the NOX emissions inventory over a wider spatial 
domain. The FD method was able to distinguish the linear shape of major highways, many of the 
large point sources, and the Galveston Bay ship track. When the method was applied to both the 
GCAS measurements and CAMx simulation independently, there were large discrepancies near 
the major highways – GCAS measurements were often much larger than CAMx in areas with high 
vehicle densities. There was generally good agreement near the point sources of the Ship 
Channel, and a potential inventory overestimate of NOX emission from marine vessels.  
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Task 5. Comparison of NO2 and HCHO between model, aircraft, and satellite  
 
When column NO2 from the CAMx simulation were compared to Pandora measurements, we 
found low correlation (r2 = 0.25) and a NMB of –20.2%. The relatively low correlation could be 
related to the difficulty in simulating wind direction and the Gulf/Bay breeze. We found a larger 
NMB between CAMx and Pandora on weekdays (–26.1%) than weekends (–5.8%), but better 
correlation on weekdays (r2 = 0.29) than weekends (r2 = 0.21).  
 
When column NO2 from the CAMx simulation were compared to the GCAS measurements, the 
NMB was larger (–37.0%) than the NMB of the CAMx vs. Pandora intercomparison, but the 
correlation between CAMx and GCAS was very strong (r2 = 0.75). We find the largest difference 
between CAMx and GCAS to be in the downtown section of Houston (Figure 2.5.5) 
 
A culmination of the NO2 intercomparison implicates a missing weekday source in the NOX 
emission inventory that is primarily collocated with highways, road density, and/or population 
density.   
 
When column HCHO from the CAMx simulation were compared to the GCAS and TROPOMI 
measurements, there seemed to be a low bias in the CAMx simulation. It is too early to know 
whether to implicate missing biogenic or anthropogenic VOCs in the simulation as the culprit for 
the disagreement. 
 
Task 6. Use of machine learning to estimate emission factors for individual sectors 
 
In the final task of this project, a multiple linear regression (MLR) model was used synergistically 
with simulated column NO2 source apportionment information from CAMx and from the GCAS 
measurements to diagnose which NOX emission inventory sectors could have biases. 
 
The results show that on-road, railyard, and KIAH airport NOX emissions may be underestimated 
in the CAMx simulation. In contrast, shipping NOX emissions may have a small overestimate. After 
the scaling factors were applied to account for these suspected biases, the MLR model replicated 
the GCAS measurements with no bias. 
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1.0 INTRODUCTION 

This document provides the final report for the Texas Air Quality Research Program (AQRP) 
Project 22-023, “Source-sector NOx emissions analysis with sub-kilometer scale airborne 
observations in Houston during TRACER-AQ”. The goal of Project 22-023 was to better 
understand the sector-by-sector NOX emissions in the Houston metropolitan area using a 
combination of chemical transport models, machine learning models, aircraft observations, 
ground measurements, and satellite datasets. 
 
The project Principal Investigator is Dr. Daniel Goldberg (George Washington University) with co-
Principal Investigator Mr. Jeremiah Johnson (Ramboll). Other personnel on the project team 
were: Dr. Laura Judd (NASA Langley), Dr. Greg Yarwood (Ramboll), Dr. Benjamin de Foy (Saint 
Louis University), and Dr. M. Omar Nawaz (George Washington University). The AQRP project 
manager is Dr. Elena McDonald-Buller at the University of Texas, Austin.  The project liaison for 
the Texas Commission on Environmental Quality (TCEQ) is Sushil Gautam. 

1.1 Background 

While fossil fuel consumption is known on a national basis with a high-degree of certainty, the 
spatial and temporal patterns of its combustion have less certainty (McDonald et al., 2012, 2013). 
The location and timing of the combustion emissions can substantially affect air quality; 
emissions in a rural area are not the same as emissions in an urban area due to the ambient 
environmental conditions and the higher probability of human exposure in urban settings.  
 
Typically, air pollutant emission rates for chemical species such as nitrogen oxides (NOX) are 
estimated using a “bottom-up” approach, which uses fuel consumption information, spatial 
surrogates (e.g., road density, population density, locations of known stack emissions), temporal 
surrogates (e.g., traffic patterns, industrial work schedules) and emission factors (mass of 
pollutant per mass of fuel burned) to estimate the spatiotemporal patterns of emissions across 
regions. With investments in technology to better understand the spatiotemporal patterns of 
pollutants (e.g., incorporating real-time traffic data using speed and type of vehicle) and 
laboratory studies to better estimate the emission factors in a wide range of conditions, these 
“bottom-up” estimates can be improved. These new and improved estimates can then be 
incorporated into a chemical transport model and evaluated against observations from satellite 
data and the ground monitoring network acquiring concentrations. Based on this comparison, 
the emission estimates can be further adjusted and improved if necessary. However, because of 
the complexity of this cycle, “bottom-up” emission estimates typically take many years to 
compile by a large team of scientists, and subsequently, are delayed in time by several years from 
the actual emission time. 
 
A complementary approach to estimate air pollutant emissions is in using a “top-down” 
approach. With this method, emissions are back-calculated from pollutant measurements 
acquired across an entire airshed. This is typically done with a remote sensing instrument – in 
orbit ((Goldberg et al., 2019b) or on an aircraft (Kuhlmann et al., 2022; Meier et al., 2017; Souri 
et al., 2018). The emission rates are inferred by analyzing the concentration maps over a large 
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region and incorporating the lifetime (chemical and dispersion lifetime) of the pollutant to back-
calculate the emission rate at the source. The advantage of this technique is that it is completely 
independent of the complex datasets needed to estimate “bottom-up” emissions rates. Further, 
while setting the foundation to do a “top-down” emission analysis can take some time 
(months/years), once the foundation is in-place, it is feasible that near-real-time emission rates 
could be derived within hours of the remote sensing measurement (Goldberg, Lu, Streets, et al., 
2019). 
 
Prior work by scientists on this team, sponsored by AQRP (Holloway et al., 2021), demonstrated 
the capability to estimate NOX emissions for the Dallas – Fort Worth metropolitan region for the 
summer of 2019 using a “top-down” approach and the Tropospheric Monitoring Instrument 
(TROPOMI). The team has also conducted similar analyses for other North American cities 
(Goldberg, Lu, Oda, et al., 2019; Goldberg, Lu, Streets, et al., 2019), power plants (Benjamin de 
Foy et al., 2015), South Asia (Benjamin de Foy & Schauer, 2022), and global megacities (Goldberg 
et al., 2021) using TROPOMI and a complementary satellite instrument, the Ozone Monitoring 
Instrument (OMI). The team is also already funded to estimate near-real-time NOX emissions 
using TROPOMI for several North American cities as part of a NASA Health and Air Quality Science 
Team (HAQAST) project grant. “Top-down” emission estimates can be helpful, especially in areas 
with very uncertain emission inventories such as Africa or the Middle East. Typically, these 
aggregated “top-down” estimates agree with the “bottom-up” estimates within 20% in North 
American cities (well within the uncertainty associated with the ‘top-down’ method) (Goldberg 
et al., 2021). However, due to TROPOMI’s spatial resolution (3.5 × 5.5 km2 at nadir) and temporal 
resolution (once daily), TROPOMI is most often used to calculate total emissions aggregated over 
the entire metropolitan area. Therefore, very limited, if any, sector-by-sector resolved 
information can be gleaned from an analysis using currently available satellite datasets. 
 

1.2 Overview of Approach 

The primary objective of this work is to support regional evaluation of emissions inventories with 
remote sensing data. However, emissions are not directly comparable with the column 
abundance detected by remote sensing instruments without further manipulation, as outlined 
above. And further, with the launch of TROPOMI (in 2017) and fine-scale measurements from 
GCAS (2021), more fine-scale information is available to the research community to evaluate NOX 
and NO2 within urban areas.  
 

1.3 Overview of Report 

 
In Section 2, we provide a comprehensive overview of the results of all six tasks of this project 
including CAMx simulations, GCAS and satellite data processing, data comparisons, and results 
on emissions analysis. In Section 3, we present conclusions and recommendations for future 
work.  
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2.0 TASK RESULTS 

 

2.1 Simulate NO2, HCHO, O3 at 444 × 444 m2 spatial resolution using WRF-
CAMx 

We ran the WRF and CAMx models for September 2021 which corresponded to the TRACER-AQ 
timeframe. Ramboll developed a new high-resolution WRF and CAMx modeling platform for this 
study. The WRF model configuration is similar to that used for the TCEQ SIP modeling, while the 
CAMx model is updated to incorporate emissions changes. We provide a model performance 
evaluation against surface monitors at the end of this section. 
 
2.1.1 Model Configuration 

2.1.1.1 WRF Model 

The WRF model is a mesoscale numerical weather prediction system designed to serve both 
operational forecasting and atmospheric research needs (Skamarock et al., 2005, 2008). We used 
version 4.3.3 of the Advanced Research WRF (ARW) in this study (Skamarock et al., 2021). 

We define the WRF 36/12/4/1.333/0.444-km modeling domains as slightly larger than the 
corresponding CAMx domains (Figure 2.1.1) to avoid possible numerical artifacts near domain 
boundaries in WRF transferring to CAMx. The 36 km CAMx domain (red) includes all of the 

continental US, Mexico and large areas of Central America and Canada. The 36 km, 12 km (blue) 
and East Texas 4 km (green) domains are also used by the TCEQ for State Implementation Plan 
(SIP) modeling. The CAMx 1.333/0.444-km domains (shown in Figure 2.1.2) were selected to 
include the most relevant GCAS flight tracks (overlaid in Figure 2.1.2) while considering 
computational demands.  
 
Our WRF physics options and data sources (Table 2.1.1) are similar to those used by the TCEQ for 
SIP modeling. We used 0.25° Global Forecasting System (GFS) data assimilation system (GDAS) 
analysis data (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-

assimilation-system-gdas) as initial conditions for the WRF meteorological model. This GDAS data 
is also used for boundary conditions and data assimilation. We configured WRF’s output time 
steps to 15 minutes for the 1.333 and 0.444 km domains.  

Table 2.1.2 presents the vertical layer mapping table from 44 WRF layers to 30 CAMx layers. This 
layer mapping is from the TCEQ SIP modeling. 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
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Figure 2.1.1. CAMx 36/12/4/1.333/0.444 km modeling domains. 
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Figure 2.1.2. CAMx 1.333/0.444 km modeling domains with GCAS NO2 vertical column density measurement data from 
September 24, 2021 overlaid. Each flight day covered approximately the same area as represented here. 

 
Table 2.1.1. WRF v4.3.3 physics options and data sources used in this study. 

WRF Option Option Selected 

Analysis Data 0.25° GDAS (IC/BCs and analysis nudging on the 36 and 12 km domains) 

Microphysics Thompson 

Longwave Radiation Rapid Radiative Transfer Model (RRTMG) 

Shortwave Radiation RRTMG 

Surface Layer Physics Revised MM5 surface layer scheme 

LSM Noah 

PBL scheme Yonsei University (YSU) 

Cumulus scheme Multi-Scale Kain-Fritsch (MSKF) on 36/12 km; none for 4/1.333/0.444 km 
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Table 2.1.2. Vertical layer mapping from 44 WRF layers to 30 CAMx layers. 

WRF 
Layer 
No. 

WRF 
Eta 
Level 

WRF Layer 
Pressure 
(mb) 

WRF 
Layer 
Top 
(m) 

CAMx 
Layer 
No. 

CAMx Layer 
Top 
(m) 

CAMx Layer  
Thickness (m) 

44 0.000 50.00 20576       

43 0.010 59.63 19458       

42 0.025 74.08 18082 30 18082 3885 

41 0.045 93.35 16616       

40 0.065 112.61 15427       

39 0.090 136.69 14198 29 14198 2977 

38 0.115 160.77 13169       

37 0.145 189.67 12120       

36 0.175 218.57 11221 28 11221 1850 

35 0.210 252.28 10304       

34 0.250 290.81 9372 27 9372 1599 

33 0.290 329.34 8534       

32 0.330 367.87 7773 26 7773 1269 

31 0.370 406.40 7073       

30 0.405 440.12 6504 25 6504 1040 

29 0.440 473.83 5969       

28 0.475 507.54 5464 24 5464 870 

27 0.510 541.26 4985       

26 0.540 570.16 4594 23 4594 737 

25 0.570 599.05 4219       

24 0.600 627.95 3857 22 3857 684 

23 0.630 656.85 3509       

22 0.660 685.75 3174 21 3174 325 

21 0.690 714.64 2849 20 2849 314 

20 0.720 743.54 2535 19 2535 304 

19 0.750 772.44 2231 18 2231 247 

18 0.775 796.52 1984 17 1984 241 

17 0.800 820.60 1744 16 1744 235 

16 0.825 844.68 1509 15 1509 230 

15 0.850 868.76 1279 14 1279 135 

14 0.865 883.21 1144 13 1144 134 

13 0.880 897.66 1010 12 1010 132 

12 0.895 912.11 878 11 878 130 

11 0.910 926.56 748 10 748 86 

10 0.920 936.19 662 9 662 85 

9 0.930 945.82 577 8 577 84 

8 0.940 955.46 493 7 493 84 

7 0.950 965.09 409 6 409 83 

6 0.960 974.72 326 5 326 82 

5 0.970 984.35 243 4 243 82 

4 0.980 993.99 162 3 162 81 

3 0.990 1003.62 81 2 81 48 

2 0.996 1009.40 32 1 32 32 

1 0.998 1011.32 16       

surface 1.000 1013.25 0 0 0   
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2.1.1.2 CAMx Model 

The science options for our CAMx simulation (Table 2.1.3) are similar to the TCEQ’s SIP modeling. 
We used CAMx v7.20 with the CB6r5 chemical mechanism. We first ran the model with TCEQ’s 
36/12/4-km SIP domains and then extracted initial and boundary conditions from the 4-km 
domain for our high-resolution 1.333/0.444 km NO2 source apportionment technology (SAT) run 
focused on Houston.  
 
Table 2.1.3. Science options used for CAMx modeling. 

Science Options CAMx Configuration 

Version Version 7.20  

Time Zone CST 

Vertical Grid Mesh 
30 Layers with 32 m deep surface layer and 15 layers in the 

lowest 1.5 km  

Horizontal Grids 2-way nested grids with spacings of 1.333 and 0.444 km  

Meteorology 2021 WRF meteorology  

Chemistry Mechanism CB6r5 gas-phase mechanism  

Chemistry Solver EBI 

Probing Tool Ozone Source Apportionment Technology (OSAT) 

Photolysis Rates 
TUV version 4.8 with TOMS ozone column adjustment and 

in-line adjustment for clouds 

Advection Scheme Piecewise Parabolic Method (PPM) 

Planetary Boundary Layer (PBL) 

mixing 

K-theory with KV100 patch to enhance vertical mixing over 

urban areas within the lowest 100 m 

In-line Ix Emissions On Inorganic iodine (Ix) emissions from saltwater areas  

Parallelization MPI (18 threads) and OMP (6 threads) 

 
2.1.1.2.1 CAMx NO2 Source Apportionment Configuration 

We used the CAMx OSAT source apportionment tool to track NO2 from several emission source 
sectors as listed in Table 2.1.4. To select individual electric generating units (EGUs) in our 0.444 
km CAMx domain for NO2 tracking we used a threshold of 0.8 tons per day (tpd) of NOx 
emissions. This threshold identified nine EGUs shown in the first nine rows of Table 2.1.4. 
Monthly total NOx emissions for each of these EGUs are shown in Table 2.1.7. We also selected 
on-road mobile, railyards, shipping and the George Bush Intercontinental (KIAH) and William P. 
Hobby (KHOU) airports for NO2 tracking. All remaining NOx emissions were tracked together in 
the Other category.  
 
Table 2.1.4. CAMx Source Apportionment configuration. 

Number Emissions Source Sector 

1 Air Liquide Bayport Complex 

2 Cedar Bayou 

3 W A Parish 

4 Odyssey Energy Altura Cogen, LLC 

5 Texas City Cogeneration 

6 Pasadena Power Plant 
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Number Emissions Source Sector 

7 Channelview Cogeneration Facility 

8 Deer Park Energy Center 

9 South Houston Green Power Site 

10 On-road mobile 

11 Railyards 

12 Shipping 

13 KHOU airport 

14 KIAH airport 

15 Other 

 
2.1.1.2.2 Modeling Emissions Inventory 

We updated the CAMx modeling emissions inventory from TCEQ’s platform to incorporate 2021 
hourly Continuous Emissions Monitoring Systems (CEMS) data for the nine EGUs listed in Table 
2.1.4 plus two additional EGUs that were detected GCAS measurements. Table 2.1.5 summarizes 
NOx and VOC emissions for a September weekday across the CAMx 0.444 km domain. A pie chart 
shows in the same values in Figure 2.1.3. 
 
Table 2.1.5. CAMx 0.444 km domain-wide summary of average September weekday emissions (tons per day) by sector. 

Emission Sector NOx (tpd) VOC (tpd) 

EGUs 25.5 0.2 

On-road mobile 70.9 34.7 

Railyards 4.2 0.3 

Shipping 63.9 4.3 

KIAH airport 6.4 0.8 

KHOU airport 1.8 0.4 

Other   

   Off-road mobile* 33.1 31.4 

   Non-EGU Point Sources 47.9 27.8 

   Oil and Gas 0.2 0.0 

   Area 92.8 623.2 

   MEGAN biogenic 25.9 319.7 

* Includes non-road and railway emissions 
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Figure 2.1.3. Pie charts of NOx and VOC emissions data presented in Table 2.1.5. 

 

2.1.1.2.3 Anthropogenic Emissions Inventory 

TCEQ developed the 2019 modeling emissions inventory for the Dallas-Fort Worth (DFW) and 
Houston-Galveston-Brazoria (HGB) Reasonable Further Progress (RFP) SIP revision. We identify 
data sources used in this inventory in Table 2.1.6. These tables are adapted from TCEQ’s HGB and 
DFW RFP SIP revision. The changes that we implemented for this study are: 

• Updating EGU point source emissions from 2019 to 2021 EPA Clean Air Markets Division 
(CAMPD) hourly data for the top NOx emitters 

• Update shipping emissions using MARINER v2 supplied with 2021 AIS data for 1.333 and 
0.444 km domains 

• Re-process link-based on-road mobile emissions for 1.333 and 0.444 km domains with 
refined spatial resolution 

• Use 2021 WRF meteorology for biogenic emissions and lightning NOx 

• Reprocess all other gridded emissions from 4 km to 1.333 and 0.444 km grids without 
refining spatial resolution 
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Table 2.1.6. Data sources for emissions inventory. Adapted from Table 3-4 of TCEQ’s HGB and DFW RFP SIP Revision.  

EI Source 
Category Sector/Geographic area 

Datasets/Models used for 2019 EI 

Point EGU 

2021 Clean Air Market Program Data for 11 

Houston EGUs; TCEQ used 2019 CAMPD for 

other EGUs* 

Point Non-EGU, Texas 2019 State of Texas Air Reporting System 

Point Non-EGU, Non-Texas EPA 2016v1 Modeling Platform 

Non-Point Oil & Gas, Texas 2019 Railroad Commission of Texas 

Non-Point Oil & Gas, Non-Texas EPA 2017 Modeling Platform 

Non-Point Off-Shore 2017 Bureau of Ocean Energy Management 

Mobile On-Road, Texas non-attainment areas 

Motor Vehicle Emission Simulator (MOVES3) - 

link-based 

Mobile On-Road, other MOVES3 - county based 

Mobile Non-Road, Texas TexN2.2 

Mobile Non-Road, Non-Texas MOVES3 

Mobile Off-Road Shipping, 4 km domain 

2019 Automatic Identification System and 

vessel characteristic IHS 2020; MARINER v1 

Mobile Off-Road Shipping, 12 km domain EPA 2016v1 Modeling Platform 

Mobile 
Off-Road Airports, Texas non-
attainment areas 

Texas Transportation Institute 
(TTI) 2020 data 

Mobile Off-Road Airports, other EPA 2016v1 Modeling Platform 

Mobile 

Off-Road Locomotives, Texas 

nonattainment areas 

TTI 2019 data 

Mobile Off-Road Locomotives, other EPA 2016v1 Modeling Platform 

Area Area, Texas 

2020 Air Emissions Reporting 

Requirements 

Area Area, Non-Texas EPA 2017 Modeling Platform 

Other International EI 
2019 Community Emission Data System; 
SMOKEv4.7_CEDS 

Natural Biogenic MEGAN3.2 using 2021 WRF meteorology 

Natural Lightning NOx Using 2021 WRF meteorology 

Natural Fires 2019 MODIS and VIIRS; FINN v2.2 

  * TCEQ’s 2019 modeling emission inventory used 2019 EPA CAMD AMPD hourly data for EGUs 

 
Examples of the spatial distributions of on-road mobile and shipping NOx emissions can be seen 
in Figure 2.1.4. 

 
Figure 2.1.4. Spatial distribution of (Left) on-road mobile and (Right) shipping daily total NOx emissions (tons per day) during 
September 2021 weekdays for 0.444 km domain. 
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2.1.1.2.4 2021 EGU Emissions Based on CEMS  

We developed hourly-specific EGU emissions using hourly CEMS data from CAMPD. Most EGUs 
use CEMS to report emissions under the Clean Air Act, including emissions of sulfur dioxide (SO2), 
NOx, and CO2, along with other parameters such as heat input. The EPA’s CAMPD quality controls 
the reported raw hourly measurements which they provide on the CAMPD website1.  We 
downloaded hourly data from EPA’s CAMPD website for the eleven EGUs shown in Table 2.1.7 
for the August 30-Sep 27, 2021 period. Stack parameters were based on TCEQ’s 2019 emissions 
platform. Table 2.1.7 provides September 2021 total monthly CEMS NOx emissions for the eleven 
power plants examined in detail in this study. Comparison of initial CAMx results against GCAS 
column measurements revealed erroneous NO2 signals from Greens Bayou and T H Wharton (last 
two rows in Table 2.1.7) that were caused by using old inventory data for these facilities. Our 
final CAMx simulation replaced emissions for these two power plants with September 2021 CEM 
data, resulting in a better agreement with GCAS measurements. 

Table 2.1.7. September 2021 monthly total NOx emissions for the eleven power plants examined in this study. 

Station NOx (tons/month) 

W A Parish 570.7 

Cedar Bayou 73.0 

Pasadena Power Plant 34.7 

Texas City Cogeneration 34.6 

Odyssey Energy Altura Cogen, LLC 30.8 

Deer Park Energy Center 27.4 

South Houston Green Power Site 25.9 

Air Liquide Bayport Complex 25.0 

Channelview Cogeneration Facility 25.0 
T H Wharton 18.1 

Greens Bayou 11.6 

 

2.1.1.2.5 Natural Emissions 

We estimated biogenic emissions for September 2021 using the Model of Emissions of Gases and 
Aerosols from Nature v3.2 developed by Ramboll in AQRP project 20-007; (MEGAN; (Guenther 
et al., 2012)).  TCEQ estimated fire emissions from Fire INventory of NCAR (FINN) version 1 
(Wiedinmyer et al., 2011). Ramboll developed lightning NOx emissions with the CAMx LNOx 
processor2 using the 2021 WRF meteorological data. Considering the limited extent of the high-
resolution CAMx domains and large degree of uncertainty with both the fire and LNOx emissions, 
we excluded these two emission sources from the 1.333/0.444 km CAMx simulation. 
 

 
1 https://campd.epa.gov/  
2 Available at https://www.camx.com/download/support-software/  

https://campd.epa.gov/
https://www.camx.com/download/support-software/
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2.1.2 Near-Surface Model Performance Evaluation 

We evaluated CAMx NO2 and ozone surface concentrations using data collected at TCEQ 
Continuous Air Monitoring Stations (CAMS) at all Houston CAMS within the 0.444 km CAMx 
domain. NOx monitors deployed for routine monitoring, e.g., at TCEQ CAMS, have limitations for 
NO2. These monitors measure NO and consequently NO2 is chemically converted to NO for 
measurement. The converter in these instruments could potentially capture other compounds 
including peroxyacyl nitrate (PAN) and a portion of nitric acid (HNO3). However, a recent study 
comparing measurements from a high-sensitivity NOx instrument with photolytic converter (no 
interference of other species with NO2) adjacent to TCEQ’s NOx instrument at Tyler Airport 
(CAMS 82) in Northeast Texas found no evidence for substantial interference from these 
compounds (UH and Ramboll, 2021). However, this study also found that routinely operated NOx 
monitors can display considerable noise below about 5 ppb. For this study, we applied a cut-off 
value of 1 ppb. Our evaluation suggests that the model results are not sensitive to cut-off values 
between 1 and 5 ppb.  
 
The scatter plot in Figure 2.1.5 shows hourly (7 AM-5 PM CST to correspond with GCAS flight 
measurement times) measurements and model pollutant concentrations at all Houston TCEQ 
CAMs located within the CAMx 0.444 km domain. Overall, the model displays a low NO2 bias 
(mean bias, MB: -5.0 ppb; normalized mean bias, NMB: -59.1%) that is more pronounced when 
monitored NO2 is high (e.g., morning rush hour).  Figure 2.1.5 shows a map of the mean bias 
across the entire modeling episode at each TCEQ CAMS NO2 monitor. CAMx shows a negative 
NO2 bias at all sites. In general, monitors away from large emissions sources (e.g., Northwest 
Harris County CAMS 26) as well as monitors adjacent to Galveston Bay (e.g., Galveston 99th Street 
CAMS 1034) show the smallest NO2 biases. In contrast, the monitors with the largest NO2 biases 
are all located within the Houston core near large emission sources (e.g., roadways and industrial 
sources). For example, the largest NO2 bias is at Houston SW Freeway C1066 (-13.9 ppb), and the 
CAMS is less than 50 m from the freeway. This suggests that even 444 m resolution is not enough 
to resolve the near-roadway NO2 at this location. 

 
Figure 2.1.5. Hourly CAMx (7 AM-5 PM CST) NO2 plotted against observed NO2 across all TCEQ CAMS sites within Houston for all 
days with GCAS flight measurements during the August 30-September 27, 2021 modeling period. 
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Figure 2.1.6. CAMx (7 AM-5 PM CST) NO2 mean bias (ppb) at each Houston TCEQ CAMS site across all days with GCAS flight 
measurements during the August 30-September 27, 2021 modeling period. 
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We present a similar scatter plot for CAMx maximum daily 8-hour average (MDA8) ozone 
compared to ozone observations at Houston CAMS in Figure 2.1.7. CAMx displays a small positive 
bias when observed ozone is below about 50 ppb and a small negative bias for higher observed 
ozone concentrations. Emery et al. (2017) defines the goal benchmark for MDA8 ozone as ± 5% 
for normalized mean bias (NMB) and < 15% for normalized mean error (NME). CAMx achieves 
the goal benchmark for NMB (-2.5%), while the NME (15.0%) is just outside the goal benchmark. 
 
 

 
Figure 2.1.7. CAMx and observed MDA8 ozone across all TCEQ CAMS sites within Houston for all days with GCAS flight 
measurements during the August 30-September 27, 2021 modeling period. 
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2.2 Process the GCAS measurements 

GCAS NO2 and HCHO column measurements were acquired during NASA G-V flights on 12 
different days over the Houston metropolitan area during late August and September 2021 
(https://www-air.larc.nasa.gov/missions/tracer-aq/docs/TRACERAQ_SciencePlan_v1.pdf) as 
part of the NASA / TCEQ TRACER-AQ field campaign. All GCAS data are publicly available at the 
NASA Langley data archive: https://www-air.larc.nasa.gov/cgi-bin/ArcView/traceraq.2021. Table 
2.2.1 shows the 10 flight days used in this project, as well as the meteorological conditions during 
the days. There were two flights – a test flight on August 30, and a flight over the Gulf of Mexico 
on September 27 – that were not used for this project. Figure 2.2.1 shows the GCAS NO2 
measurements from September 8, 2021, a code red ozone day in the Houston metropolitan area 
demonstrating the granularity of information provided.  Distinct NO2 plumes are clearly seen 
from the areas of Mont Belvieu, Baytown, Deer Park, and Texas City. 
 
Table 2.2.1. Flight days of the NASA G-V during September 2021 and associated meteorological conditions. 

Day of 
Sept 
2021 

Day 
of the 
Week 

High 
Temp 

Wind direction Additional comments 

1 Wed 96 F Weak SW winds Thunderstorms from S to N, 11 AM to 4 PM 

3 Fri 93 F Weak S winds Scattered thunderstorms 12 PM to 4 PM 

8 Wed 94 F N turning NE Clear skies and no rain 

9 Thurs 95 F N turning NE Afternoon fair weather clouds, no rain 

10 Fri 93 F NE turning E Clear skies, no rain, some long-range smoke aloft 

11 Sat 93 F E winds Afternoon fair weather clouds, no rain 

23 Thurs 83 F E winds Clear skies, no rain, cold font overnight Sept 21 

24 Fri 84 F E turning SE Clear skies, no rain 

25 Sat 87 F NE turning E Clear skies, no rain 

26 Sun 83 F Calm then SE Clear skies, afternoon fair weather clouds 
 

 
Figure 2.2.1. GCAS measurements acquired during all daylight hours on Wednesday September 8, 2021. 

https://www-air.larc.nasa.gov/missions/tracer-aq/docs/TRACERAQ_SciencePlan_v1.pdf
https://www-air.larc.nasa.gov/cgi-bin/ArcView/traceraq.2021
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In this Task, the GCAS measurements were re-processed in two different stages. In the first stage, 
the data were re-processed to better account for missing data (R1 in the TRACER-AQ dataset 
archive). This stage was a data re-formatting change, and almost no measurements were altered 
during this re-processing. Second, the data were re-processed to include NO2 vertical profile 
estimates from the CAMx simulation. Vertical profile information is needed to process the GCAS 
measurements because remote sensing instruments have different sensitivities at different 
altitudes above the surface (less sensitive near the surface) and this needs to be accounted for. 
Upon original release of this dataset, a global model – GEOS-CF – with 0.25° × 0.25° spatial 
resolution was used to process the GCAS measurements, but in this project 444 × 444 m2 spatial 
resolution information was used instead.  
 
To determine the accuracy and precision of the GCAS data, we compare to Pandora 
measurements of total column NO2. Measurements are collocated to within 15 minutes of the 
GCAS measurement. For comparisons between Pandora and GCAS, there is a substantial but 
predictable “above aircraft” column that is not reflected in the GCAS measurements but is 
reflected in the Pandora measurements. This is caused primarily by NO2 in the stratosphere. To 
account for this, we approximate the above aircraft component of the GCAS NO2 column based 
on TROPOMI stratospheric values and add this correction factor. 
 
As shown in Figure 2.2.2, the GCAS measurements had a very strong correlation of r2 = 0.79 and 
small normalized mean bias of +5.6% compared with the Pandora. We found that re-processing 
the GCAS measurements with 444 × 444 m2 spatial resolution model information had a beneficial 
effect, but less than we originally suspected. Using the 444 × 444 m2 spatial information to re-
process the GCAS measurements, increased the r2 correlation from r2 = 0.80 to r2 = 0.81 and 
reduced the normalized mean bias from +6.3% to +3.2%. The strong correlation and low 
normalized bias of the GCAS measurements indicates the high fidelity of these measurements in 
polluted areas such as Houston. However, the Pandora instruments were sited at polluted 
locations, and the performance of the GCAS at less polluted sites is still unclear. 

 
Figure 2.2.2. Evaluation of GCAS NO2 columns compared to Pandora with (Left) the GEOS-CF air mass factor and (Right) with a 
CAMx-based air mass factor developed in this project. GCAS observations were mapped to the CAMx grid and compared in the 
single grid cell that contained the Pandora site. The Pandora measurements closest in time with the GCAS overpasses were used 
for comparison; however, Pandora observations beyond +/- 15 minutes of a GCAS overpass were not considered. 



 
30 

To determine whether GCAS performance was better at very polluted sites or moderately 
polluted sites, we performed the analysis for each of the three Pandora measurement sites 
individually (La Porte, Aldine, and University of Houston). Of the three measurements sites, the 
University of Houston site was the most polluted location for NO2, but all three typically 
measured NO2 values indicative of a polluted urban environment. Figure 2.2.3 shows excellent 
agreement at the Aldine (r2=0.81 and NMB=+16.4%) and the University of Houston (r2=0.85 and 
NMB=–1.5%) measurement sites, and only marginally degraded correlation and comparable 
bias at the La Porte site (r2=0.45 and NMB=–4.6%). Correlation at the LaPorte site may be lower 
because Pandora and GCAS observed a smaller dynamic range in values. Interestingly, there 
were two Pandoras co-stationed at the University of Houston Moody Tower site – Pandora 188 
located on top of the roof of the building and Pandora 25 located at ground-level – and there is 
larger column NO2 observed by Pandora 25 at ground-level, which is a real difference.  
 

 
Figure 2.2.3. Locations of the Pandora instruments and their correlation with GCAS within +/- 15 minutes 
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Comparing GCAS HCHO to Pandora shows strong correlation – albeit less than NO2 – and a 
strong linear relationship. We suspect that Pandora MAX-DOAS might have a low bias, but we 
are still working with the Pandora team to determine the cause. While the GCAS HCHO 
measurements are noisy, they do seem to capture the dynamic range observed by Pandora.  

 

Figure 2.2.4. GCAS HCHO measurement compared to the nearest Pandora MAX-DOAS observation in time (within +/- 15 
minutes). The horizontal bars represent the max/min of Pandora in that time frame.  
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2.3 Process the satellite NO2 measurements 

Measurements of tropospheric vertical column NO2 from TROPOMI are available daily between 
1:30 PM – 3:00 PM local time over the Houston metropolitan area every day since April 30, 
2018. For this project, we used measurements from the version 2.3.1 algorithm released in 
December 2021. We screened the TROPOMI data for clouds and erroneous data using the 
recommended qa_flag > 0.75 filter. The TROPOMI NO2 version 2.3.1 data are publicly available 
at: https://data-portal.s5p-pal.com/products/no2.html. Daily snapshots of TROPOMI NO2 as 
well as the September 2021 monthly average are shown in Figure 2.3.1. 
 

 
Figure 2.3.1. TROPOMI NO2 v2.3.1 tropospheric column measurements over the Houston metropolitan area. Information about 
the day-of-the-week, maximum daily high temperature, and predominant wind direction in the early afternoon are overlaid. 

https://data-portal.s5p-pal.com/products/no2.html
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We then re-gridded the NO2 column information onto the 444 × 444 m2 CAMx grid and re-
calculated the NO2 vertical columns using the CAMx simulated NO2 vertical profiles. Inclusion of 
the NO2 vertical profiles estimates from the CAMx simulation – similar to the GCAS – increased 
TROPOMI values in the urban polluted areas and decreased the values in the suburban and 
rural areas. The max value of the monthly tropospheric column NO2 average increased by +11 % 
from 7.9 x 1015 molecules/cm2 to 8.8 x 1015 molecules/cm2, while the mean value decreased by 
–8% from 2.5 x 1015 molecules/cm2 to 2.3 x 1015 molecules/cm2. This is consistent with other 
literature showing an increase in the values in the most polluted areas when higher resolution 
model information is included. 
 

    TROPOMI NO2 v2.3.1   TROPOMI NO2 v2.3.1 (CAMx AMF) 

  
Figure 2.3.2. TROPOMI NO2 v2.3.1 tropospheric column measurements over the Houston metropolitan area. (Left) Using the 
operational air mass factor and (Right) using a CAMx-based air mass factor 
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Measurements from TROPOMI NO2 version 2.3.1 show very good correlation r2 = 0.62 and a 
small but systematic –11.7% NMB when compared to the Pandora instruments. Updating the air 
mass factor had almost no effect on the correlation or bias at the Pandora measurement sites. 
The underestimated normalized mean bias may be due to satellite pixel size which cannot 
resolve individual plumes and neighborhood-scale features.  
 

 
Figure 2.3.3. TROPOMI NO2 v2.3.1 total column measurements with the (Left) operational AMF and (Right) re-processed CAMx 
AMF. Pandora observations that are closest in time to the TROPOMI overpass time are matched to the value of the TROPOMI 
grid cell which includes the Pandora site. Measurements that are beyond +/- 15 minutes of the overpass time are excluded. 
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To facilitate a direct comparison between GCAS and TROPOMI we average both to a 0.1° × 0.1° 
grid; this coarser grid is more appropriate since we cannot expect TROPOMI – with a native 
resolution of approximately 5 km – to capture the fine-scale NO2 features that GCAS can 
measure. When doing a direct comparison between NO2 columns from GCAS and TROPOMI 
during all collocations (Figure 2.3.4), TROPOMI has a normalized mean bias of  –27.3%. The 
correlation between the two measurements, however, was very strong (r2 = 0.93). 

 
Figure 2.3.4 (Top Left) GCAS monthly column NO2 for all measurements within a +/- 1.5 hour time window of each day’s 
TROPOMI mid-afternoon overpass time compared to (Top Right) NO2 from TROPOMI. (Bottom Left) Difference between GCAS 
and TROPOMI. (Bottom Right) Scatterplot of CAMx vs. TROPOMI; yellow points indicate that there are a high number of other 
points close to it.  
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A new version of the TROPOMI NO2 algorithm – version 2.4 – was released by the European 
Space Agency on March 30, 2023. This version of the algorithm had adjustments to the surface 
reflectivities used to calculate the air mass factor and tropospheric vertical column; the slant 
column measurement was not modified in the new version 2.4 algorithm. 
 
In Figure 2.3.5, measurements from the TROPOMI NO2 version 2.3.1 and version 2.4 algorithms 
are compared to each other. In bottom row of Figure 2.3.5, the performance of the version 
2.3.1 and version 2.4 algorithms are compared to the Pandora measurements in a similar 
manner as Figure 2.3.3. In most cases, the version 2.4 algorithm has smaller values in the 
Houston metropolitan area. This resulted in slightly degraded performance at the Pandora 
measurements sites. The version 2.4 has a worse normalized mean bias (V2.4: –15.0%, V2.3.1: –
11.7%) and modestly reduced correlation (V2.4: r2 = 0.60, V2.3.1: r2 = 0.62). Future work will 
compare to the NASA MINDS TROPOMI NO2 algorithm, which was released in Fall 2022 
(https://disc.gsfc.nasa.gov/datasets/TROPOMI_MINDS_NO2_1.1/). 
 

 
Figure 2.3.5. TROPOMI NO2 (Left) v2.3.1 total column measurements and (Right) v2.4 total column measurements. (Top row) 
The September 2021 monthly average during clear skies. (Bottom row) Pandora observations that are closest in time to the 
TROPOMI overpass time are matched to the value of the TROPOMI grid cell which includes the Pandora site. Measurements that 
are beyond +/- 15 minutes of the overpass time are excluded. 

 

https://disc.gsfc.nasa.gov/datasets/TROPOMI_MINDS_NO2_1.1/
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2.4 Calculating NOX from GCAS NO2 airshed measurements 

NOX emission rates can be inferred from NO2 using a combination of spatially continuous NO2 
airshed measurements, wind data, and statistical inversion techniques. By tracking the NO2 
plume decay since origination, the NOX emissions at the source can be inferred. In this project, 
we use two methods to estimate NOX emissions: 1) Exponentially modified Gaussian (EMG) fit 
(Beirle et al., 2011) for several of the point sources and 2) Flux divergence (Beirle et al., 2019) 
for a more spatially complete estimate. Method 1 has applicability to only point sources or 
pseudo point sources (e.g., an airport), whereas Method 2 has suitability for a wider range of 
sources but needs additional assumptions to derive NOX emissions rates.  

2.4.1 EMG fit to estimate NOX emissions from point sources 

2.4.1.1 Background 

In this Task, we used the EMG fit to estimate the NOX emissions from several point sources in 
the Houston metropolitan area. Briefly, a point source NO2 plume is integrated perpendicularly 
across its width to create a 1-dimensional line density. This 1-D line density has a Gaussian 
shape at the plume source and an exponential plume decay downwind as NO2 is converted into 
other chemical species. An illustrative example of this is shown in Figure 2.4.1. 

 
Figure 2.4.1. Illustrative example of a Gaussian plume with exponential decay. Scatter points are the integrations across the 
plume width, while the solid/dotted lines are best fits of the data using an Exponentially Modified Gaussian fit. 

The EMG fit equation is shown below: 
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where α is the total number of NO2 molecules observed near the emission source, excluding the 
effect of background NO2, β; xo is the e-folding distance downwind, representing the length 
scale of the NO2 decay; µ is the location of the apparent source relative to the assumed 
pollution source center; σ is the standard deviation of the Gaussian function, representing the 
Gaussian smoothing length scale; Φ is the Gaussian cumulative distribution function.   

NOX emissions (Equation 2) can be inferred from four variables: two variables from the fit – α 
(NO2 at the source) and xo (decay distance) – and two additional variables – NOX/NO2 ratio and 
w (horizontal wind speed). The NOX/NO2 ratio is assumed to be 1.32 (Beirle et al., 2019) and 
horizontal wind speed is obtained from the 100-m height of the ERA5 re-analysis.  

𝑁𝑂𝑥 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =
𝑁𝑂𝑋

𝑁𝑂2
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)  (2) 
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2.4.1.2 EMG fit applied to several point sources in Houston  

The first part of this Task was to apply the EMG fit to the GCAS measurements overpassing the 
W.A. Parish Power Plant NO2 plume at 3 PM local time on September 24, 2021 to determine 
whether the method is able to replicate the stack-measured CAMPD hourly emissions. Table 
2.4.1 shows the hourly NOX emission rates in units of kmol per hour – originally reported as lbs 
per hour – between 9 AM and 9 PM local time on September 24, 2021. NOX emission rates were 
relatively constant during this time frame, between 12.5 – 14.7 kmol per hour.  At 3 PM local 
time, the hourly NOX emissions rate was 13.6 kmol per hour. 

Table 2.4.1 Hourly CAMPD NOX emissions on September 24, 2021 from the W. A. Parish Power Plant. 

 

Local time NOx (lbs) NOx (kmol) 

9:00 AM 1262 12.4 

10:00 AM 1246 12.3 

11:00 AM 1204 11.9 

12:00 PM 1489 14.7 

1:00 PM 1470 14.5 

2:00 PM 1421 14.0 

3:00 PM 1383 13.6 

4:00 PM 1350 13.3 

5:00 PM 1401 13.8 

6:00 PM 1318 13.0 

7:00 PM 1309 12.9 

8:00 PM 1324 13.1 

9:00 PM 1268 12.5 

 



 
39 

In Figure 2.4.2, we apply the EMG fit to the GCAS measurements over the W.A. Parish Power 
Plant NO2 plume and derive a rate of 13 kmol per hour. The same method is applied to the 
CAMx simulation, which ingests the CAMPD hourly measurements, and derive a rate of 18 kmol 
per hour. The uncertainty of the EMG fit method has been reported to be between 40 – 60%  
(Lu et al., 2015; Verstraeten et al., 2018). Both GCAS and CAMx are able to replicate the CAMPD 
emissions within appropriate uncertainty bounds. The disagreements between the CAMPD 
stack measurements and the EMG fit on both the GCAS measurements and CAMx simulation 
are likely related to the assumed NOX/NO2 ratio and wind speed. The NOX/NO2 has variation at 
these fine spatial scales, which we do not account for. The wind speed also has uncertainty – if 
a higher vertical level is assumed – then wind speed would increase and so would the inferred 
NOX emissions rate.   

      GCAS measurements           CAMx simulation 

 
Figure 2.4.2. EMG fit applied to the (Left) GCAS column NO2 measurements and (Right) CAMx column NO2 simulation at the 
W.A. Parish Power Plant at 3 PM local time on September 24, 2021. 
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The EMG fit was then applied to five additional areas with points source NOX emissions in the 
Houston metropolitan area including Baytown, Channelview, Mont Belvieu, Texas City, and the 
IAH international airport.    

Estimates for two point sources in the Houston area are shown in Figure 2.4.3 (Baytown), and 
Figure 2.4.4 (Channelview). In the Baytown area, we find a large discrepancy between the GCAS 
measurements and the CAMx simulation. Using the GCAS measurements, we find a NOX 
emissions rate of 14 kmol per hour, while the CAMx simulation had an estimate of 8 kmol per 
hour. The difference between GCAS and CAMx exceeds the 40 – 60% uncertainty of the method 
giving us some confidence that there is an underestimate of NOX emissions in the Baytown 
area. In the Channelview area, we find better agreement: 3.2 kmol per hour from GCAS and 2.6 
kmol per hour from CAMx. The method did not work at Mont Belvieu, Texas City, and IAH. This 
is because plumes at these locations were not isolated enough from nearby sources to garner a 
good fit. However, as we note in Section 2.5, we did not see large discrepancies at any of these 
locations in the NO2 comparison.  

      GCAS measurements    CAMx simulation 

  

Figure 2.4.3. EMG fit applied to the (Left) GCAS column NO2 measurements and (Right) CAMx column NO2 simulation at the 
Baytown area at 1 PM local time on September 8, 2021. 

      GCAS measurements    CAMx simulation 

  
Figure 2.4.4. EMG fit applied to the (Left) GCAS column NO2 measurements and (Right) CAMx column NO2 simulation at the 
Channelview area at 1 PM local time on September 9, 2021. 
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2.4.2 Flux divergence to estimate NOx emissions 

2.4.2.1 Background 

The flux divergence method has been shown to identify point sources in the TROPOMI NO2 
retrievals with higher resolution than averaged vertical column densities. Initially, the method 
was applied over Riyadh, Germany and South Africa and was used to estimate NOx emissions 
from large point sources (Beirle et al., 2019). The method was subsequently used to develop a 
global catalog of NOx point sources (Beirle et al., 2021, 2023). Due to TROPOMI’s higher 
resolution compared with OMI, the flux divergence method can identify emissions within 
individual urban areas (Benjamin de Foy & Schauer, 2022). This method was applied over the 
U.S. and identified some of the largest highways in the country (Sun, 2022). Goldberg et al. 
(2022) used the flux divergence method to evaluate SIP modelling emission inventories in 
Texas. 
 
2.4.2.2 Flux divergence applied in Houston metropolitan area  

The flux divergence method works best with long temporal averages. For TROPOMI analysis, 
annual or multi-year averages are used. We adapted the method for the current project to 
handle GCAS data from 27 individual scenes spanning 10 days. We found that the method 
worked best when the GCAS data was oversampled to the 444 × 444 m2 CAMx grid. Only pixels 
with an aircraft roll angle below 0.5 degrees were used. We interpolated the WRF-CAMx winds 
to the time of the GCAS overpass. We used second-order differences and performed the flux 
divergences along the x/y axes (i.e., using the cells to the north, south, east, and west of the 
central cell). We also calculated the flux divergence for the cross-terms (i.e., using the cells to 
the north-east, south-east, south-west and north-west of the central cell). Averaging both the 
x/y estimate and the cross-estimate led to smoother divergence fields with less noise. 
 
The method was initially performed using the GCAS standard retrievals and the ERA5 wind 
reanalysis product (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). While 
this gave good results, we found that the level of noise was reduced and the known sources 
were better identified when we used the GCAS retrievals that were corrected using the CAMx 
air mass factors, and when we used the WRF-CAMx meteorology. These sensitivity tests 
revealed that CAMx simulations can be used to yield clear improvements in the flux divergence 
method. 
 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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The flux divergence method was able to identify the main point sources in the Houston CAMx 
domain: power plants and refineries (see Figure 2.4.5), as well as the IAH international airport. 
In addition, the method identified the area of the ship channel as well as the route of the ships 
sailing through the Galveston Bay. Finally, the method clearly identified the major highways in 
the region.  

 
Figure 2.4.5: Average flux divergence of GCAS NO2 retrievals using CAMx air mass factors over Houston. White diamond shows 
the international airport (IAH). 
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Figure 2.4.6 shows the flux divergence method applied to the CAMx simulations. In this case, 
the sources are known and so these simulations serve to evaluate the accuracy of the method. 
As can be seen, the method clearly recovers the main point and line sources used in the CAMx 
simulations. 

 
Figure 2.4.6: Average flux divergence applied to CAMx NO2 vertical column densities. White diamond shows the international 
airport. 
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Figure 2.4.7 shows the ratio of the flux divergence using GCAS and using CAMx for the grid cells 
exceeding 0.2 ug-m2-s-1. Over the large point sources near the ship channel, the values are a 
mix of positive and negative values suggesting that the emissions inventory is relatively 
accurate in this location. Over highways, the values are large and positive suggesting that actual 
on-road emissions may be higher than in the current inventory. Over the ship paths, especially 
closer to the Gulf of Mexico, the values are negative suggesting that some of the ship NOX 
emissions may be overestimated in the inventory. 

 
Figure 2.4.7: Ratio of flux divergence of GCAS NO2 columns and CAMx columns. 
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2.5 Comparison of NO2 and HCHO between model, aircraft, and satellite 

2.5.1 Comparison of NO2 between model, aircraft, and satellite 

In this Task, we rigorously compared the CAMx model simulation to the variety of NO2 
observations available to better understand NOX emissions and modelled NO2 dispersion. For 
comparisons of total column NO2 between Pandora and CAMx, we apply a stratospheric 
component – originally from the TROPOMI measurements – to the CAMx simulation. 

CAMx total vertical column NO2 had the worst agreement (r2 = 0.25) with the Pandora NO2 
column measurements and a normalized mean bias of –20.2%. The relatively low correlation 
could be related to the difficulty of identically simulating plume dispersion, especially 
dispersion related to the Gulf/Bay breeze. We found that small errors in the simulated wind 
direction (errors of 10° – 30°) could be responsible for the majority of the low correlation. On 
many of the days, the wind veered slightly over time usually less than 45° over the course of the 
daylight hours, but occasionally more than that. A 10° difference in the wind direction could be 
the difference between whether the Pandora measurement site was “hit” by a narrow NO2 
plume or avoided it altogether.  

 
Figure 2.5.1. CAMx total column NO2 (stratospheric component added) vs. Pandora total column NO2 matched to nearest hour.  
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Some of the NO2 low bias between CAMx and Pandora may be related to background NO2, but 
since the background NO2 in the Houston urban environment is a small fraction of the total 
column (an error of ~0.5 x 1015 molecules/cm2, which is <10% in most cases), we do not think 
this is having a meaningful impact. Instead, we believe that a low CAMx NO2 bias may be 
related to a NOX emissions underestimate from certain sectors of emissions. We further found 
that the bias between CAMx and Pandora is better on weekends (–5.8%) than during weekdays 
(–26.1%), suggesting that day of week emission profiles may need further investigation. 
 

 
Figure 2.5.2. CAMx total column NO2 (stratospheric component added) vs. Pandora total column NO2 matched to nearest hour, 
for (Left) weekdays and (Right) weekends. 
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When doing a direct comparison between NO2 columns from GCAS and CAMx during all 
collocations, CAMx has a normalized mean bias of –37.0%. The disagreements were largest in 
the downtown Houston area as shown in Figure 2.5.3.  

 

Figure 2.5.3. (Top Left) GCAS monthly column NO2 for all measurements compared to (Top Right) coincident NO2 from CAMx. 
(Middle Left) Difference between GCAS and CAMx. (Middle Right) Scatterplot of CAMx vs. GCAS. (Bottom Left) Wind rose of 
NOAA surface observations compared to (Bottom Right) Wind rose from WRF at the same locations. 
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In Appendix A, we show the daily comparisons for all 10 flight days. NO2 column disagreements 
between GCAS and CAMx were largest on Wednesday September 8 and Thursday September 
23, while agreement was best on Sunday September 26. The disagreements on September 8 
and September 23 seem to further implicate missing NOX emissions in the downtown area as 
both days had northerly winds, and the point source plumes located on the east side of the 
metropolitan area did not overlap. 

Further, the daily intercomparisons show that point source plumes tend to diffuse into wider 
plumes than simulated by CAMx. Addressing this shortcoming is beyond the scope of this 
project, but could be addressed by future work.  

Next, we compare GCAS to CAMx in certain sections of the Houston metropolitan area. We 
compare GCAS to CAMx outside of the most NO2 polluted zones of Houston. We find that there 
is a small but systematic low NO2 bias in the CAMx simulation of -27.7%. This may be related to 
lightning NOX or some other long-range transport of NO2. This systematic bias is often less than 
10% of the total NO2 column in the downtown Houston area.  
 

 
Figure 2.5.4. Comparison between GCAS and CAMx in the “background” areas of Houston. 
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We then compare GCAS and CAMx in the downtown area, while also filtering out NO2 plumes 
from the point sources on the east side of the city. For this intercomparison, we find a large 
difference: GCAS is significantly larger than CAMx near downtown. This once again implicates 
missing NOX emission sources in the downtown area.  
 

 
Figure 2.5.5. Comparison between GCAS and CAMx in the “urban” areas of Houston. 
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2.5.2 Comparison of HCHO between model, aircraft, and satellite 

HCHO can be a good indicator of primary VOC emissions, and secondary ozone production. In 
this project, we qualitatively compared TROPOMI and CAMx to each other. CAMx outputs a 
“background” value of approximately 8 x 1015

 molecules per cm2 and a further ~1.5 x 1015
 

enhancement over the Houston metropolitan area. Qualitatively comparing to Pandora and 
TROPOMI – which is observing HCHO in the range of 10 – 20 x 1015

 molecules per cm2 – the 
CAMx HCHO values in the Houston metropolitan area seem marginally low and warrant further 
investigation. It is too early to determine whether the source of this difference would be 
biogenic or anthropogenic.  

 
Figure 2.5.6. CAMx column HCHO during September 2021. 

Unfortunately, TROPOMI cannot capture an urban HCHO enhancement which is likely 
originating from the Houston area. Quite simply, the TROPOMI HCHO measurement has too 
much instrument noise to be useful at the urban scale and over short timeframes, such as a 
single month. Instead TROPOMI HCHO is more useful for evaluating regional scale VOC 
emissions, such as those across all of eastern Texas and over seasonal timeframes (Goldberg et 
al., 2022). Future work could evaluate TROPOMI HCHO over longer timeframes.  

 
Figure 2.5.7. TROPOMI HCHO during September 2021 for (Left) Texas and (Right) zoomed in to the Houston metropolitan area.  
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2.6 Use of machine learning to estimate emission factors for individual sectors 

Machine learning algorithms are being widely applied to estimate scaling factors for emission 
inventories. CAMx simulations were made in Source Apportionment mode to separate the NO2 
Vertical Column Densities associated with each of 17 sectors. The CAMx model configuration is 
described in Section 2.1. 
 
A Multi-Linear Regression (MLR) model was built to estimate the optimal combination of 
individual CAMx sectors that would best match the GCAS NO2 retrievals. In practice, some of 
the emission sources in OSAT are too close together to be able to be clearly distinguished form 
each other. We therefore merged the following: 1. Channelview Cogeneration Facility and 
Odyssey Energy Altura Cogen, LLC; 2. Deer Park Energy Center and Pasadena Power Plant; 3. 
Texas City Cogeneration, South Houston Green Power Site, and the “Other” category. We 
applied the MLR model to the entire field campaign, and we also performed simulations 
separately for weekdays and for weekends. 
 
In seeking an optimal match to the GCAS columns, it is important to apply a regularization term 
to prevent unphysical results (de Foy et al., 2015). The regularization term imposes a cost on 
the departure of the posterior emissions from the prior emissions. The algorithm then balances 
the cost in the change of the emissions with the cost of the mismatch between the GCAS 
retrievals and the sum of the scaled fields from the source apportionment simulations. We 
assume as a prior that all scaling factors are 1.  
 
Our first sensitivity test is on the value of the regularization term, as shown in Figure 2.6.1. The 
top panel shows the variation of the estimated scaling factors. The bottom panel shows the 
cost function and the change in the correlation factor between the GCAS retrievals and the MLR 
model results. When the regularization term is 1000 (or higher), the cost of departing from the 
prior is too high and the model returns only scaling factors of 1. This is the “do nothing” model. 
When the regularization term is 1 or lower, the cost on the scaling factors is irrelevant and the 
model scaling factors grow so long as they make even the tiniest increase in the correlation. 
This is the “do anything at any cost” model. In between these two extremes, we have smoothly 
varying scaling factors, and we need to identify criteria for selecting the appropriate 
regularization factor. In this work, we chose a value of 25, shown in Figure 2.6.1, which 
balances the desire to maximize the improvements in the model (lower Grid Residuals) while 
minimizing the departure from the prior (lower Emission Residuals). By selecting this value, we 
achieve most of the improvements in the correlation coefficient of the model without ending 
up with unrealistic scaling factors. 
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Figure 2.6.1. Top: Scaling factors on CAMx source sectors as a function of the regularization term (Rweight). Bottom: Cost 
function of the emission term and the gridded residual, along with scaled r2 value of the GCAS retrievals with the reconstituted 
Multi Linear Regression model. The black vertical line indicates the regularization term selected for this study.  

We performed an uncertainty analysis using bootstrapping on two different levels. The most 
important level for bootstrapping was randomly selecting, with replacement, the GCAS rasters 
included in the optimization. For the full time series, there were 27 rasters. In addition to 
performing the simulations for these 27 rasters, we performed 100 simulations with random 
selections of the 27 rasters. The second level for bootstrapping was to randomly select grid 
blocks for use in the analysis. We randomly select 7 x 7 blocks of cells within the CAMx grid cells 
and include them until we have the same number of points as in the initial grid. We did this 100 
times for each selection of rasters, leading to a total of 10,000 simulations.  
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The scaling factors for each source sector are shown as boxplots in Figure 2.6.2 for weekdays 
and for weekends. There were 19 rasters on weekdays and 8 rasters on weekends, which 
explains the somewhat larger uncertainty on weekends: any particular raster would have a 
larger influence and therefore its absence, or conversely its multiple inclusion, would have a 
larger impact on the scaling factors.  
 
The boxplot suggests that the NO2 background concentration is underestimated by CAMx and is 
consistent with findings in Task 5. The boxplot also shows that on-road mobile emissions may 
be underestimated in the model. This may also be true for railyard emissions. In contrast, the 
shipping emissions may be overestimated, though it should be noted from Figure 2.6.1 that the 
sign of the shipping adjustment changes with the regularization factor. The EGU point sources 
are close to a scale factor of one, especially Bayport and Cedar Bayou, which is expected given 
the use of emissions obtained from CAMPD measurements. The “Other” sources are 
underestimated, although this factor is particularly sensitive to the regularization factor.  
 

 
Figure 2.6.2: Boxplot of scaling factors obtained from the Multi Linear Regression Model with 100 bootstrapped selection of 
rasters and 100 bootstrapped selection of grid blocks to include in the analysis. 
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Figures 2.6.3 and 2.6.4 show the CAMx column NO2 as well as the adjusted MLR Source 
Apportionment column NO2. The latter has a better representation of the sources over the 
Houston urban area. The top row in each figure shows the total NO2 VCDs, while the remaining 
rows display the sectoral components. In Figure 2.6.3, we show the following emission sectors: 
on-road mobile, railyards and shipping emissions. In Figure 2.6.4, we show “Points” (sum of all 
sectors not plotted separately: Bayport, Cedar Bayou, KIAH, Odyssey and Channelview, Deer 
Park and Pasadena), background, other). This shows how each sector contributes to the total 
column NO2 and gives an impression of how the spatial distributions of the different sectors 
contribute to the overall distribution of NO2 columns over Houston. 

 
Figure 2.6.3: CAMx and MLR Source Apportionment NO2 Vertical Column Densities (VCD) along with contribution from different 
sectors: Left: CAMx default, Right: MLR Adjusted values. 
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Figure 2.6.4: CAMx and MLR Source Apportionment NO2 Vertical Column Densities (VCD) along with contribution from different 
sectors: Left: CAMx default, Right: MLR Adjusted values. (Same as previous figure but for different sectors. “Points” is the sum of 
all sectors not plotted separately: Bayport, Cedar Bayou, KIAH, Odyssey and Channelview, Deer Park and Pasadena. 
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The spatial data in Figures 2.6.3 and 2.6.4 can be summed over different domains to get a more 
quantitative measure of the contribution of each sector, as shown in Figure 2.6.5 for both the 
CAMx simulations and the MLR Source Apportionment model. The first 3 sets of bars are for the 
entire domain, with the contributions for the grid cells that have NO2 VCD below average (prc-
50), all grid cells (prc0) and the grid cells above average only (prc50). The other domains are 
calculated as the grid cells where the NO2 VCD contribution of each sector is 90% of the 99% 
percentile (i.e., to get the threshold, you calculate the 99% of the columns from that sector 
alone and multiply by 0.90). As an example, consider IAH: The algorithm selects only the grid 
cells above the airport. For those cells, the airport itself contributes around 30% of the NO2 
columns. This shows that overall, the background and “Other” term are the main contributors 
to the NO2 columns, with shipping and on-road mobile emissions contributing somewhat 
smaller amounts. Point sources have relatively low impacts, even for the cells close to the 
sources. 
 

 
Figure 2.6.5. Sector contribution to NO2 Vertical Column Densities of the Multi Linear Regression model for domains of each 
sector. 
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3.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The TRACER-AQ field campaign provided an unprecedented opportunity to compare and validate 
multiple observation platforms and model simulations. In this project, we take a close look at 
NO2 observations and simulations during this campaign to better understand where there may 
be shortcomings in the NOX modeling emissions inventory. 

3.1 Summary of Findings 

In this project, we were able to conduct a thorough analysis of NO2 during the TRACER-AQ 
campaign. We found column NO2 from GCAS to have excellent agreement with Pandora 
measurements (r2=0.81 and NMB of +2.4%). Column NO2 from TROPOMI had good correlation 
with Pandora (r2=0.62), but there was a low bias that was not resolved when a CAMx-based air 
mass factor was used (–11%). When comparing TROPOMI to GCAS, it appears that the 
TROPOMI low bias might be worse than indicated by the Pandora comparison (–37%); future 
TROPOMI algorithm updates and future satellite missions with smaller pixel sizes may resolve 
this low bias. Column NO2 from CAMx showed a substantial low bias when compared with 
Pandora (–20%) and GCAS measurements (–37%). Through a machine learning model, we were 
able to isolate on-road, railyard, and “other” NOX emissions as the likeliest cause of this low 
bias; agreement between model and measurements on the weekend days was better. Our 
analyses were primarily conducted using column NO2 instead of surface NO2 to diagnose NOX 
emissions since vertical mixing can be a source of error in a surface-only comparison. Summary 
of findings separated by task are described below: 
 
Task 1: 

• WRF and CAMx have been run at high spatial resolution (444 × 444 m2) 

• CAMx achieves the goal benchmark for MDA8 ozone NMB (-2.5%), while the NME (15.0%) 
is just outside the goal benchmark. 

• CAMx surface NO2 disagreements at CAMS monitors (NMB of –59.1% and NME of 62.3%), 
which we partially attribute to the difficulty of capturing hourly and near-road variability. 
 

Task 2: 

• GCAS aircraft-based measurements acquired fine-scale structure of urban NO2; NO2 
plumes from highways, ships, point sources can be seen in isolation. 

• GCAS column NO2 has excellent agreement with Pandora NO2 (r2=0.80 and NMB of +6.3%) 

• Using CAMx to re-process the AMF for GCAS gave marginal improvement to already 
excellent agreement (now r2=0.81 and NMB of +3.2%) 

 
Task 3: 

• Satellite NO2 has great correlation with Pandora measurements (r2=0.62) and a small but 
important low bias (–11.7%). Low bias was not appreciably improved when using a CAMx-
based air mass factor (–11.2%). 

• Satellite NO2 has a more substantial low bias when compared to GCAS (–37%) – that may 
improve with future algorithm updates, and possibly will only be improved with higher 
resolution pixels, such as TEMPO. 
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Task 4: 

• EMG fit matched CAMPD NOX emissions for the W.A. Parish Power Plant within 
reasonable uncertainty (+/-20%). 

• NOX emissions appear to be underestimated by –45% in Baytown on September 8, 2021; 
no conclusive evidence of whether this extends to other days. 

• The FD method was able to distinguish the linear shape of major highways, many of the 
large point sources, and the Galveston Bay ship track.  

• NO2 Flux divergence comparison between CAMx and GCAS shows underestimates at 
highway locations. 

 
Task 5: 

• CAMx versus Pandora column NO2 intercomparison showed a low bias in CAMx (–20.2%) 

• CAMx versus GCAS column NO2 intercomparison, which has a larger spatial footprint, 
showed larger NO2 underestimates (–37%) and especially in downtown Houston. 

• NO2 model performance was worse on weekdays than weekends, implicating a weekday 
emissions source as the source of the disagreement. 

• GCAS HCHO and Pandora HCHO have strong correlation. May be a low HCHO bias in CAMx 
but cannot disentangle whether source of disagreement is biogenic or anthropogenic.   

 
Task 6: 

• MLR confirms that on-road mobile and railyard NOX during weekdays may be 
underestimated, followed by weekend KIAH airport sources. 

 

3.2 Recommendations for Future Work 

• Investigate biases found for on-road and port (rail, airport, shipping) NOx emissions in a 
new CAMx simulation, while also accounting for the different weekday/weekend biases. 
Is there better agreement between observations and CAMx when NOX emissions are 
increased? 

• Investigating the cause of the low bias in TROPOMI over Houston. Is this related to pixel 
size or something else? Are biases less in the NASA algorithm? Does TEMPO observe the 
same patterns as GCAS and TROPOMI? It will be important to fully account for the 
TROPOMI low bias in any future model/TROPOMI intercomparisons. 

• Use TROPOMI to investigate NO2 over longer timeframes. Are similar patterns seen? Are 
spatial NO2 trends consistent with the NOX inventory trends? 

• More upper tropospheric measurements and measurements outside of urban locations 
are needed to better constrain GCAS and TROPOMI in the less polluted areas of Texas. 
Performance of GCAS outside of urban areas is largely unvalidated.  

• Further analysis of HCHO. Do anthropogenic VOC emissions need to be increased? If VOC 
emissions need to be modified, how does this affect the NO2 lifetime, model NO2 
intercomparison, and O3 model performance? 
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4.0  AUDITS OF DATA QUALITY 

 
We performed Quality Assurance/Quality Control (QA/QC) procedures in accordance with the 
Quality Assurance Project Plan (QAPP) completed at the beginning of this project. Per 
requirements for Category III projects, we performed data audits on at least 10% of the data sets. 
In this section, we report the results of our QA/QC. 
 

4.1 CAMx simulations 

The WRF-CAMx model was run by Ramboll. Validation of WRF-CAMx modeling with the NRTEEM 
platform is described by Johnson et al. (2020) and subsequently used in Goldberg et al. (2022). 
Ambient NO2 concentrations simulated by the WRF-CAMx modeling were compared with all 
available ground-based observations of NO2 during the modeling time period, as detailed in 
Section 2.1. 
 

4.2 GCAS screening 

We used all GCAS data where the cloud glint flag did not equal 1.0. This screened out pixels with 
optically thick clouds. 
 

4.3 TROPOMI screening 

We used all TROPOMI data where the quality assurance flag was greater than 0.75. This screened 
out pixels with optically thick clouds. 
 

4.4 EMG Analysis 

The EMG technique (Goldberg et al., 2022; Goldberg, Lu, Streets, et al., 2019) was selected for its 
ability to produce emission estimates directly from TROPOMI data with minimal additional data. 
Calculation of parameters in the EMG approach are based on wind speed and direction, which 
were taken from the Ramboll WRF simulations at 444 x 444 m2. We also applied the EMG 
technique using widely available re-analysis data, the ECMWF ERA-5 (Hersbach et al., 2020) for 
the purpose of anticipating how using re-analysis data (rather than WRF simulations) may 
influence the EMG analysis in the future if WRF simulations are not available. We focused on the 
meteorological parameter that EMG uses, wind speed. We found the NOX emissions that resulted 
from using the two different wind speed datasets were within 20%. Therefore, wind speed may 
contribute up to a third of the total uncertainty of the EMG method (~60%). 
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Appendix A. GCAS vs. CAMx daily comparisons 
 
Sept 1, 2021: Wednesday 
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Sept 3, 2021: Friday 
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Sept 8, 2021: Wednesday 
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Sep 9, 2021: Thursday 
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Sept 10, 2021: Friday  
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Sept 11, 2021: Saturday 
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Sept 23, 2021: Thursday 
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Sept 24, 2021: Friday 
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Sept 25, 2021: Saturday 
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Sept 26, 2021: Sunday 
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